A Gaussian Mixture Model Based Speech Recognition System Using Matlab

نویسنده

  • Manan Vyas
چکیده

This paper aims at development and performance analysis of a speaker dependent speech recognition system using MATLAB®. The issues that were considered are 1) Can Matlab, be effectively used to complete the aforementioned task, 2) Accuracy of the Gaussian Mixture Model used for parametric modelling, 3) Performance analysis of the system, 4) Performance of the Gaussian Mixture Model as a parametric modelling technique as compared to other modelling technique and 5) Can a Matlab® based Speech recognition system be ported to a real world environment for recording and performing complex voice commands. The aforementioned system is designed to recognize isolated utterances of digits 0-9. The system is developed such that it can easily be extended to multisyllabic words as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Speech Enhancement using Laplacian Mixture Model under Signal Presence Uncertainty

In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE  estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of  noise are assumed zero-mean Gaussian distribution. Furthermore, the MMS...

متن کامل

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

Text-Independent Speaker Identification Using GMM With Universal Background Model

State-of-the-art of speaker recognition is fully advanced nowadays. There are various well-known technologies used to process voice, including Gaussian mixture models. The paper presents our work on speaker identification from his voice. In our experiment we first extract key features from a speech signal using VOICEBOX [1]toolbox in MATLAB. These features are represented by a matrix of mel fre...

متن کامل

Spoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting

Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013